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Abstract
Saline tidal wetlands are important sites of carbon sequestration and produce negligible 
methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, wide-
spread management of coastal hydrology has restricted tidal exchange in vast areas of 
coastal wetlands. These ecosystems often undergo impoundment and freshening, which 
in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon 
balance. Understanding controls and scaling of carbon exchange in these understudied 
ecosystems is critical for informing climate consequences of blue carbon restoration and/
or management interventions. Here, we (1) examine how carbon fluxes vary across a sa-
linity gradient (4–25 psu) in impounded and natural, tidally unrestricted Phragmites wet-
lands using static chambers and (2) probe drivers of carbon fluxes within an impounded 
coastal wetland using eddy covariance at the Herring River in Wellfleet, MA, United 
States. Freshening across the salinity gradient led to a 50-fold increase in CH4 emissions, 
but effects on carbon dioxide (CO2) were less pronounced with uptake generally en-
hanced in the fresher, impounded sites. The impounded wetland experienced little varia-
tion in water-table depth or salinity during the growing season and was a strong CO2 sink 
of −352 g CO2-C m−2 year−1 offset by CH4 emission of 11.4 g CH4-C m−2 year−1. Growing 
season CH4 flux was driven primarily by temperature. Methane flux exhibited a diurnal 
cycle with a night-time minimum that was not reflected in opaque chamber measure-
ments. Therefore, we suggest accounting for the diurnal cycle of CH4 in Phragmites, for 
example by applying a scaling factor developed here of ~0.6 to mid-day chamber meas-
urements. Taken together, these results suggest that although freshened, impounded 
wetlands can be strong carbon sinks, enhanced CH4 emission with freshening reduces 
net radiative balance. Restoration of tidal flow to impounded ecosystems could limit CH4 
production and enhance their climate regulating benefits.
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1  |  INTRODUC TION

Coastal wetlands are a powerful sink for carbon (C) from the at-
mosphere due to their rapid rates of C uptake and slow rates of 
decomposition (Chmura et al.,  2003; McLeod et al.,  2011). In ad-
dition, the presence of sulfate-rich seawater in tidally influenced 
coastal ecosystems suppresses the production of methane (CH4; 
Bartlett et al., 1987; DeLaune et al., 1983; Luo et al., 2019; Weston 
et al., 2006), a potent greenhouse gas (GHG). Therefore, with rapid C 
sequestration and minimal CH4 production, the “blue carbon” stored 
in coastal wetlands is of high value for mitigating GHG emissions 
and is increasingly being looked to by various entities as a natural 
climate solution for C removal (McLeod et al., 2011; NASEM, 2019). 
Conserving healthy coastal wetlands to maintain their net climate 
regulating benefit is a priority within this natural climate solution 
framework, but there is also substantial promise for reining in CH4 
emissions and improving GHG balance by restoring coastal wetlands 
that have been degraded through extensive hydrological manage-
ment (Kroeger et al., 2017). While the most effective strategy for 
avoiding the worst effects of climate change remains rapidly reduc-
ing fossil fuel carbon dioxide (CO2) emissions, enhancing the climate 
regulating benefits of natural ecosystems is part of a comprehensive 
approach to tackle this grand challenge (IPCC, 2021).

Approximately one million ha of wetlands along the US coast are 
in a state of hydrological management, having been tidally restricted 
by barriers like dikes and transportation infrastructure (Crooks 
et al., 2018; Fargione et al., 2018; Kroeger et al., 2017). About half 
of these managed coastal wetlands are drained for alternative land 
uses, whereas the rest are impounded, meaning that the water is 
retained but tidal exchange is limited or excluded. While the global 
extent of coastal areas under this type of hydrological management 
is unknown, the high density of roadways fragmenting coastal land-
scapes worldwide (Ibisch et al., 2016) suggests that tidal restrictions 
are an important factor in the global decline of coastal wetlands 
over the last century (Li et al., 2018) and are widespread (Kroeger 
et al., 2017). Impoundment leads to a suite of changes that affect 
wetland function, including shifts in salinity, water level dynamics, 
frequency and extent of tidal flushing, and vegetation communities 
(Portnoy,  1999; Roman et al.,  1984). These changes, particularly 
freshening and reduced sulfate supply that can drive CH4 production 
(Bartlett et al., 1987; Poffenbarger et al., 2011; Wang et al., 2017; 
Windham-Myers et al.,  2018), are likely to alter the GHG bal-
ance of the ecosystem and increase net radiative forcing (Kroeger 
et al., 2017). Although there is a high degree of uncertainty regard-
ing the total area (Holmquist et al., 2018) and restoration potential 
(Crooks et al., 2018) of tidally restricted coastal wetlands, recent es-
timates suggest that up 12 Tg CO2-eq year−1 of CH4 emission could 
be avoided if impounded ecosystems in the United States alone were 
restored to a state of natural tidal exchange (Fargione et al., 2018).

Reducing CH4 emission, which has a sustained global warm-
ing potential 45 times that of CO2 over a century (Neubauer & 
Megonigal,  2015), is a critical component of the effort to rapidly 
scale back atmospheric GHG concentrations (IPCC,  2021) and 

an emerging priority focus of global climate policy (e.g., Global 
Methane Pledge of November 2021). As infrastructure ages and sea 
levels rise, management decisions for coastal areas are increasingly 
pressing. Although there are many competing priorities influencing 
coastal decision-making, a better understanding of the GHG conse-
quences of management options should be of increasing importance 
for coastal stakeholders. In fact, tidal wetland restoration projects 
are now eligible to generate carbon credits in voluntary and certain 
compliance markets via global and national standards (Clean Energy 
Regulator, 2022; Needleman et al., 2018). But, although blue carbon 
ecosystems are already being incorporated into national emissions 
reductions targets (Herr & Landis,  2016), guidelines for national 
GHG inventories do not account for the potential of avoided CH4 
emissions (IPCC, 2014). Thus, it is critical to gain a better, scalable 
understanding of how CH4 emission change with restoration scenar-
ios to advance this climate mitigation opportunity.

Empirical data on impounded coastal ecosystems, which have 
distinct characteristics from their natural counterparts, are scarce 
and relatively few continuous data sets on gas exchange like those 
derived from eddy covariance exist for coastal ecosystems (Knox 
et al., 2019; Lu et al., 2017). In impounded ecosystems, freshening 
often occurs due to reduced seawater exchange and retained ground 
or surface water from fresh, upland sources (Burdick et al., 2001). In 
the eastern United States, freshening due to tidal restrictions and 
impoundments is particularly associated with increased competitive 
advantage and subsequent invasion by non-native Phragmites aus-
tralis (hereafter Phragmites) (Roman et al., 1984). The net effect of 
the rapid growing, deep-rooted Phragmites on ecosystem CO2 and 
CH4 balance remains unresolved due to counteracting influences 
of Phragmites on wetland biogeochemistry (Armstrong et al., 2006; 
Emery & Fulweiler,  2014; Martin & Moseman-Valtierra,  2015; 
Windham, 2001). As a result of these complex interactions, the ef-
fects of changes to salinity with invasion by Phragmites may manifest 
in unique ways compared to other wetland vegetation.

A better understanding of how salinity and impoundment affect 
CH4 and CO2 fluxes in coastal wetlands dominated by Phragmites is 
needed to improve predictions of how tidal restoration would change 
CH4 emissions and ultimately radiative balance. The objectives of 
this study were to (1) investigate whether the widely observed influ-
ence of salinity on CH4 emissions is maintained across impounded 
versus tidally unrestricted ecosystems dominated by Phragmites 
and (2) to probe the specific drivers of CH4 and CO2 fluxes within a 
Phragmites-invaded impounded wetland. We used both static cham-
bers to assess C fluxes across a salinity gradient along with eddy 
covariance to more thoroughly explore the patterns and magnitude 
of annual C exchange in an impounded wetland. We hypothesized 
that reduced salinity in impounded sites would result in greater CH4 
emissions and that low variability in salinity and water-table depth in 
impounded ecosystems, due to limited tidal activity and hydrologic 
flushing, increases the importance of other factors, like tempera-
ture, in controlling CH4 and CO2 exchange. In addition, by employing 
two complementary tools for assessing C fluxes (static chambers 
and eddy covariance), we gained insight into approaches for scaling 
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measured fluxes in coastal wetlands to management-relevant met-
rics to support assessment and monitoring of C exchange for blue 
carbon applications.

2  |  METHODS

2.1  |  Site descriptions

The Herring River (41.9380, −70.0552) is a 400-ha diked estuary com-
plex that is part of the Cape Cod National Seashore in Wellfleet and 
Truro, MA, with mean annual temperature of 10.3°C and 1153 mm 
of annual precipitation from 1991 to 2020 (Arguez et al.,  2012) 
(Figure 1). Dike construction across the main channel in 1908, along 
with continued management of upstream waterways, has created an 
estuary complex composed of both impounded and drained areas 
where freshwater vegetation such as Phragmites, Typha, various 
shrub species, and woodland have replaced former salt marsh habi-
tat (Portnoy, 1999). This study examines sites within a monodominant 
Phragmites stand in a mesohaline impounded zone located approxi-
mately 1 km landward of the dike and adjacent to the main channel 
(Figure 1e). Two sites were established between the main channel and 
the upland forest edge. Despite their proximity, the sites have consist-
ent differences in salinity, with the low salinity site closer to the main 
channel (hereafter Impounded-Low) and the high salinity site closer to 
the forest edge (hereafter Impounded-High). Both sites are within 65 m 
of an eddy covariance tower (Ameriflux Site Code US-HRP, described 
below) and are representative of the dominant land cover within the 
tower footprint (Figure S1).

Sage Lot Pond marsh (41.5583, −70.5039) is a 119-ha natural 
salt marsh complex with natural, unrestricted tidal exchange lo-
cated within the Waquoit Bay National Estuarine Research Reserve 
in Falmouth, MA on Cape Cod with mean annual temperature of 
10.7°C and 1219 mm of annual precipitation from 1991 to 2020 
(Arguez et al., 2012; Figure 1). Vegetation in the low marsh is dom-
inated by Spartina alterniflora, while the high marsh community is 
composed of Spartina patens, Distichlis spicata, Juncus gerardii, and 
various Salicornia species with Phragmites encroaching from the for-
ested upland edges (Wang et al.,  2016). We established two sites 
along an axis from the bay toward the inland marsh edge. The site 
closer to the bay experiences more frequent tidal inundation and 
more saline waters (hereafter Unrestricted-High) than the inland site, 
which is at a higher elevation and where fresh groundwater contrib-
utes to lower salinity (hereafter Unrestricted-Low; Figure 1f).

2.2  |  Environmental measurements and vegetation 
characteristics

In June 2020, we constructed boardwalks at all sites to allow for 
repeated sampling with minimal disturbance. At each site we in-
stalled a ~30 cm deep 3-cm-diameter PVC well screened from 0 to 
20 cm depth and equipped to monitor water-table depth relative 

to the soil surface, salinity, and water temperature (In-Situ Inc.; 
Aqua TROLL 200). Due to abnormally dry conditions across Cape 
Cod that began in July and persisted through December 2020 
(USDM,  2021), water table at the Unrestricted-Low site dropped 
below the 20-cm depth deployment of the original water-level sen-
sor. All well data presented after July 2020 for the Unrestricted-Low 
site is from a deeper well (80 cm, screened 10–70 cm depth; 65 cm 
deep sensor) that was added to account for the shallow water-
table depth. Wells were coupled with temperature sensors in the 
canopy at 1 m height and soil temperature at 10-cm depth (HOBO 
Pro v2; Onset HOBO Pro v2). At one location at Herring River (eddy  
covariance tower) and one location at Sage Lot Pond (Unrestricted-
High), we measured above canopy air temperature and relative 
humidity (Onset HOBO Temperature/RH Smart Sensor S-THB-
M00x), barometric pressure (In-Situ Inc.; Rugged BaroTROLL), and 
incoming photosynthetically active radiation (PAR; Onset HOBO 
Photosynthetically Active Radiation Smart Sensor S-LIA-M003).

To characterize differences in vegetation density across sites, we 
conducted a survey of live Phragmites culm density, along with mean 
height and diameter in early September 2020 prior to senescence. 
We non-destructively measured five evenly spaced 1-m2 quadrats 
around both a 4- and 8-m radius circle centered on the chambers 
(n = 10 per site). We then estimated biomass using both height and 
diameter according to a Phragmites-specific allometric equation 
(Lu et al., 2016).

2.3  |  Static chamber flux measurements

Static chamber CH4 and CO2 flux measurements were collected five 
times per site from the mid- to late-growing season in 2020 on July 
21, August 19, September 15, October 14, and November 9 at the 
unrestricted sites at Sage Lot Pond and on July 28–29, August 25–
26, September 23, October 19, and November 18 at the impounded 
sites at Herring River. Round 3/16″ thick PVC collars (55-cm inner 
diameter, 24-cm height) were inserted into the sediment surround-
ing intact vegetation to a depth of at least 10 cm more than 4 weeks 
prior to sampling. The collars were sharpened on the bottom edge 
and a serrated knife and reciprocating saw were used to cut through 
roots to reduce compaction of the sediment. There were two 1.3-cm 
holes drilled 3 cm from the collar bottom to allow equilibration of 
water below the surface and another 1.6-cm hole at the sediment 
surface to allow for drainage of surface water, which was plugged 
with a rubber stopper during sampling. The three collars per site 
were all within 2 m of the well and temperature sensors.

We used a modular system of ⅛” thick clear, round acrylic cham-
bers (California Quality Plastics, Inc.) to enclose the vegetation and 
sediment surface for flux measurement (Figure  S2). Chamber sec-
tions were 55-cm diameter and 0.91 m tall. Depending on the height 
of the vegetation at the sampling location, we used either two (unre-
stricted sites at Sage Lot Pond) or three (impounded sites at Herring 
River) stacked chambers for a total chamber height of 1.83 or 2.74 m 
and empty chamber volume of 0.43 or 0.64 m3, respectively. The 
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topmost chamber always had a transparent lid permanently affixed 
with silicone caulking and a vent tube to allow for pressure equil-
ibration. Once the chambers were stacked, the junction between 
sections was sealed with a 5  cm wide self-amalgamating gas and 
water-impermeable silicone tape (Rescue Tape; Seal It Services, 
Inc.). Two battery-powered fans (10 cm in diameter) were attached 
to the inside of the chamber to homogenize air, and temperature 
sensors (HOBO TidbiT v2; Onset HOBO Tidbit v2) were mounted 

to the inside of the top and bottom chambers to record chamber air 
temperature. On each sampling date, we counted the number, mean 
height, and diameter of living and standing dead Phragmites culms 
within each collar. We also recorded the actual height of the collar 
wall above the soil or water surface and the mean depth of the litter 
layer to accurately assess total volume. Soil volumetric water con-
tent integrated over the top 5 cm was measured (Meter Group Inc., 
TEROS-10) just outside each collar after gas sampling. All samples 

F I G U R E  1  Map illustrating the location of sites relative to the (a) northeastern United States and (b) Cape Cod. (c) the dike-impounded 
Herring River is hydrologically restricted from tidal exchange with Wellfleet Harbor while the (d) unrestricted estuary at sage lot pond is 
open to tidal activity from Waquoit Bay. The black rectangles in panels (c) and (d) indicate the locations of panels (e) and (f), respectively. 
(e) the location of the eddy covariance tower at Herring River (Ameriflux site code US-HRP) is shown, along with the impounded-low and 
impounded-high sites between the main channel and forest edge f) the unrestricted-high and unrestricted-low sites at sage lot pond are 
distributed along an axis from the bay towards the upland forest. Map image is the intellectual property of Esri and is used herein under 
license. Copyright © 2014 Esri and its licensors. All rights reserved. [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)

(e) (f)

https://onlinelibrary.wiley.com/
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were collected during mid-day hours between 10:00 and 14:00 local 
standard time.

Changes in concentrations of CH4 and CO2 during the incuba-
tion were measured using a portable optical feedback-cavity en-
hanced absorption spectrometer (LI-7810 CH4/CO2/H2O Trace 
Gas Analyzer; LI-COR, Inc.) sampling at 1 Hz. The gas analyzer was 
attached to the chamber with ¼” nylon tubing (of varying length 
from 220 to 457 cm depending on the number of chambers used) 
via a sampling port in the topmost chamber and recirculated into 
the chamber via a port at the base. Incubations were conducted 
for 3–7 min, based on visual inspection of the stability of a linear 
concentration change in the gases of interest. Chamber flux incu-
bations were conducted both in the light to quantify net ecosystem 
exchange (NEE), and in the dark to quantify ecosystem respiration 
(RECO) in the absence of photosynthesis. Dark measurements were 
made after light measurements were completed by covering the 
outside of the chamber with an opaque bubble reflective foil insu-
lation (US Energy Products). The top chamber section was removed 
between the transparent and opaque incubations to ventilate and 
avoid oversaturation of the chamber air with CH4 only if chamber 
CH4 concentrations were over 3500 ppb, a threshold below the 
range where CH4 saturation has been observed in static chamber 
methodological studies (Juszczak, 2013).

We used a sliding regression (“rollRegres” package in R, 
Christoffersen, 2019) to identify the 150-s window during the incu-
bation where a simple linear regression of CH4 or CO2 concentration 
by time had a maximum R2. Most measurements (98% of CH4 mea-
surements, 67% of CO2 measurements) had an R2 > .90 (CH4 mean 
R2 = .99, sd = 0.02, n = 60; CO2 mean R2 = .87, sd = 0.19, n = 60). 
However, samples collected with slopes near 0 had low R2 values 
(Figure S3), reflecting the low fluxes from those chambers that result 
in a small dependence of gas concentration on time. We therefore 
retained measurements where R2 was below 0.90 for a given gas 
(usually CO2) if the slope for the other gas (e.g., CH4) measured con-
currently did have a high R2 (>.90), indicating no leakage or other 
experimental error (Moseman-Valtierra et al.,  2016). We verified 
that all linear models used to calculate flux had a significant slope 
(p < .001) and an RMSE ≤ 1 ppm for CO2 and ≤10 ppb for CH4. One 
measurement did not have a slope significantly different than 0, and 
that flux was therefore set to 0. We also monitored each chamber 
incubation for rapid changes in CH4 concentration over time that 
deviated from the typical steady linear accumulation of CH4 as a sig-
nal of potential ebullition. When potential ebullition was observed, 
in addition to applying the sliding 150-s linear regression described 
above, we estimated flux based on the total accumulation of CH4 
over the length of the entire incubation as the difference between 
the initial and final concentration of measured CH4 (Needelman 
et al., 2018). The rate of concentration change of CO2 and CH4 (lin-
ear slope or the total CH4 accumulation over time when ebullition 
was suspected) was converted to an area-based flux as per Davidson 
et al.  (1998) using the volume and footprint of the chamber, along 
with measured chamber air temperature (pooled across the two 
temperature sensors) and field measured air pressure. Calculations 

were executed with the “conc_to_flux” function in the R package 
“ecoflux” (Shannon,  2018). Chamber volume was corrected based 
on the tubing volume and number, height, and diameter of live and 
dead Phragmites culms in each individual chamber (assuming perfect 
cylinders), as well as the actual measured depth of the chamber col-
lar above the sediment or water surface and the depth of the litter 
layer, which was assumed to have a 50% pore space. However, the 
calculated flux error associated with accounting for vegetation vol-
ume in the chamber was on average less than −2.5% relative to the 
empty chamber. Gross primary production (GPP) for each chamber 
measurement was calculated using NEE from the transparent incu-
bation and RECO from the opaque incubation as GPP = RECO − NEE 
for comparison with data from the eddy covariance tower.

2.4  |  Eddy covariance ecosystem flux 
measurements

An eddy covariance system was originally installed at the Herring 
River site in 2017 to collect ecosystem scale measurements of CO2 
and CH4 fluxes across the land surface (Ameriflux code US-HRP). 
A tripod tower was equipped with a LI-7500A open path CO2/H2O 
analyzer (LI-COR, Inc.) and a LI-7700 open path CH4 analyzer (LI-
COR, Inc.), along with a CSAT-3 3-D sonic anemometer (Campbell 
Scientific). Instruments are deployed at 4.4 m height above the 
ground surface, along with the suite of meteorological sensors 
described above (§ 2.2) that measure air temperature and humid-
ity, incoming photosynthetically active radiation, and barometric 
pressure, along with precipitation (Onset HOBO Rain Gauge Smart 
Sensor S-Rgx-M002). Continuous measurements of salinity, water 
temperature, water-table depth, and soil temperature were recorded 
at the two chamber flux sampling sites at Herring River (Figure 1e) 
that are representative of the tower footprint and mean values from 
the two sites were used for all eddy covariance analysis. Eddy covari-
ance data were collected at a frequency of 10 Hz and ancillary mete-
orological data were collected every 5 min (or 15 min for well metrics 
and soil temperature). Here we present 1 year of data collected 
from late-May 2020 through late-May 2021, with an approximately  
4-week gap in data collection from late-September to late-October 
and another 2.5-month gap in CH4 data collection from December–
February due to instrument malfunction.

Half-hourly fluxes of CO2 and CH4 were computed from the 
covariation of high-frequency vertical wind direction and CO2 and 
CH4 concentration (Baldocchi, 2003) using the EddyPro software 
package (version 7.0.6, LI-COR, Inc.). Raw high frequency data 
were despiked (Vickers & Mahrt, 1997) and a double coordinate 
rotation was applied to anemometer measurements (Wilczak 
et al.,  2001) along with a flux correction for the effects of hu-
midity on sonic air temperature (Van Dijk, & Dolman, 2004), high-
frequency and low-frequency spectral attenuations (Moncrieff 
et al., 1997), and air density fluctuations (Webb et al., 1980) cou-
pled to instrument-related sensible heat flux in the winter (Burba 
et al., 2008). Footprint modeling to verify the sampling area was 
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performed (Kljun et al.,  2015). We report fluxes as NEE, where 
negative values indicate net uptake of gas by the land surface and 
positive values indicate net loss of gas to the atmosphere. We re-
moved low quality measurements (>1 per Mauder & Foken, 2006 
quality flag, where 0 = highest quality fluxes, 1 = fluxes suitable 
for annual budget analysis, 2  =  fluxes that should be discarded 
due to low quality), measurements made during and immediately 
following precipitation events, and any measurement collected 
during site maintenance or known instrument malfunction. We 
also removed measurements made during low-turbulence con-
ditions with potential advective losses (Aubinet,  2008) and 
when friction velocity, u*, was below a site-specific threshold 
of 0.118 m s−1 (Papale et al.,  2006). To account for uncertainty 
in u* threshold estimation, bootstrapping (100 iterations) was 
applied to u* threshold estimation, and we report a range of cu-
mulative fluxes calculated based on the 5% (0.082 m s−1) and 95% 
(0.163 m s−1) estimates (Papale et al., 2006; Wutzler et al., 2018). 
Instrument malfunction caused a gap in some meteorological 
data from late-January through mid-April 2021, and missing data 
(relative humidity and PAR) were filled with data from a nearby 
monitoring station to enable gapfilling of gas fluxes (EPA, 2021). 
Overall, we retained 65% of annual half-hourly measurements 
(54% of nighttime fluxes and 69% of daytime fluxes) for CO2 and 
56% (44% of nighttime fluxes and 61% of daytime fluxes) for CH4. 
Gapfilling of half-hourly CO2 fluxes was performed using the mar-
ginal distribution sampling methodology and NEE was partitioned 
into its component fluxes, GPP and RECO, based on nighttime 
fluxes as a proxy for daytime respiration (Reichstein et al., 2005). 
We selected the nighttime partitioning approach because night-
time turbulence is relatively high and diurnal temperature varia-
tion is relatively modest at this coastal site providing a reasonable 
overlap of day and night conditions. In addition, due to the im-
pounded state of the wetland, tidal cycles were not an import-
ant consideration for nighttime partitioning (see Results). All u* 
estimation, CO2 flux gapfilling, and partitioning were conducted 
with the R-based eddy covariance processing tool, “REddyProc” 
(Wutzler et al., 2018). Gapfilling of half-hourly CH4 fluxes was per-
formed using a random forest model, which included air tempera-
ture, soil temperature, water temperature, relative humidity, PAR, 
water-table depth, salinity, NEE, vapor pressure deficit, latent heat 
exchange, and air pressure (Kim, Johnson, et al., 2020).

2.5  |  Data and statistical analysis

All carbon flux and environmental data reported here are avail-
able in Sanders-DeMott et al.  (2022) and O'Keefe Suttles, Eagle, 
Sanders-DeMott, et al. (2022). Data and statistical analyses were 
conducted in R v. 4.0.2 (R Core Team, 2022) using the ‘dplyr’ 
and ‘ggplot2’ packages for data manipulation and visualization 
(Wickham, 2016; Wickham et al., 2020). All values are reported as 
mean ± one standard deviation unless otherwise indicated. Where 

applicable, all statistical models were verified by post-hoc perfor-
mance assessments to check for normality and heteroscedasticity 
of residuals.

The effect of chamber transparency on measured CH4 flux was 
assessed for each site by a paired sample Wilcoxon signed rank test 
for individual chamber reps (n = 15 paired measurements per site). 
We evaluated the effect of site on all measured chamber fluxes 
(pooled CH4, NEE from transparent chambers, RECO from opaque 
chambers) using linear mixed effects models implemented with the 
“lmer” function in the “lme4” package in R (Bates et al., 2015) with 
individual chamber replicates as the sample unit (n = 15 per site) and 
site as a fixed effect with month as a random effect to account for 
repeated measurements. Methane fluxes were log-transformed to 
meet the assumptions of normality. Contrasts among sites for signif-
icant models were conducted via Tukey's honestly significant differ-
ence test performed with the “contrasts” function in the “emmeans” 
R package (Lenth, 2020).

To explore potential drivers of chamber CH4 and CO2 fluxes 
across sites, we computed the mean flux from the three chamber 
replicates at each site for each date and paired with simultaneously 
measured (mean values between 10:00 and 14:00 LST on measure-
ments days) environmental variables, including salinity, water-table 
depth, soil moisture, water temperature, soil temperature, air tem-
perature in the canopy, air temperature above the canopy, relative 
humidity, and PAR, as well as mean live biomass in the chambers to 
conduct non-parametric Spearman's rank correlation analysis across 
all sites and sampling dates (n  =  4 sites × 5 sampling dates  =  20). 
Significant correlation between CH4 and salinity was further ex-
plored with linear regression analysis (Poffenbarger et al.,  2011), 
with CH4 fluxes log-transformed to conform with assumptions of 
normality.

We evaluated drivers of CH4 and CO2 fluxes using eddy covari-
ance data at the daily scale using univariate ordinary least squares 
regression. Mean values of soil temperature, water temperature, 
water-table depth, and salinity across the two chamber sampling 
sites within the tower footprint at Herring River (Impounded-Low 
and Impounded-High), along with air temperature and PAR measured 
at the tower were used in the models, with CO2 fluxes (NEE, RECO, 
and GPP) as drivers of CH4 flux. We excluded daily values of C fluxes 
where more than 75% of half-hourly values were gapfilled. Models 
were constructed for the full annual data set and separately for the 
growing season only (May–October), since 81% of annual CH4 was 
emitted during this period and many of the drivers covaried season-
ally (e.g., colder temperatures, higher water table, and higher salinity 
in the non-growing season). We also assessed the mean diurnal cycle 
of both NEE and CH4 flux by averaging fluxes in each half hour of the 
day binned by month.

To directly compare the instantaneous fluxes measured by the 
eddy covariance tower with the chamber measurements, we cal-
culated the mean of eddy covariance measurements collected on 
chamber sampling dates at Herring River between 10:00–14:00 
LST when chambers were sampled (n = 57 high-quality 30-min flux 
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measurements) and compared to mean chamber measurements 
from Impounded-Low and Impounded-High. We also compared esti-
mates of cumulative CH4 fluxes from the chambers and measured 
by the flux tower over the 5-month chamber sampling period (July–
November). We scaled chamber CH4 measurements by converting 
the instantaneous measurements to the full 24-h period and then 
developed simple log-linear models based on daily air temperature at 
each site to estimate daily CH4 flux from July–November (Figure S4). 
Although there is substantial uncertainty inherent in upscaling lim-
ited measurements to a cumulative seasonal estimate, temperature 
correcting our measurements (similar to Weston et al., 2014) pro-
vided lower, and thus more conservative estimates of CH4 emission 
and the associated benefit of tidal restoration than the common 
assumption that monthly measurements represent a mean monthly 
flux (Bridgham et al., 2006; Poffenbarger et al., 2011). For the eddy 
covariance measurements, we summed the gapfilled half-hourly 
measurements of CH4 flux for the 5-month period that overlapped 
with the chamber sampling.

3  |  RESULTS

3.1  |  Environmental measurements and plant 
characteristics

The mesohaline sites at the impounded Herring River were consist-
ently fresher and had a higher water table than the polyhaline un-
restricted sites at Sage Lot Pond (Figure S5a–d). Salinities at each 
of the four sites formed a gradient of fresher to more saline from 
Impounded-Low (4.0 ± 0.4  ppt), to Impounded-High (8.6 ± 0.8  ppt), 
to Unrestricted-Low (12.0 ± 2.3), to Unrestricted-High (24.7 ± 4.8) 
(Figure S5c,d). At the Herring River sites, water-table depth (where 
negative values indicate water table below the sediment surface 
and positive values indicate inundation above the surface) was rela-
tively stable over the growing season and remained near or above 
the surface, with an average depth of −0.30 ± 1.7  cm (range: −5.3 
to +4.0 cm) at Impounded-Low and +0.04 ± 1.5  cm (range: −4.2 to 
+4.4 cm) at Impounded-High. Water table at the hydrologically un-
restricted Sage Lot Pond sites dropped from June through late 
September and began to rise again in October, with mean seasonal 
depth of −13.5 ± 8.4  cm (range: −31.2 to −2.5  cm) at Unrestricted-
Low and −4.4 ± 7.3  cm (range: −20.4 to +6.8  cm) at Unrestricted-
High (Figure S5a,b). Water temperature varied seasonally across all 
sites (Figure  S5e,f), with slightly higher mean temperatures at the 

unrestricted sites (15.6 ± 2.2°C at Unrestricted-Low and 16.7 ± 3.6°C 
at Unrestricted-High) than at the impounded sites (14.6 ± 3.2°C at 
Impounded-Low and 15.1 ± 3.3°C at Impounded-High).

Although all sites were dominated by Phragmites, the density, 
height, culm diameter, and total biomass of live vegetation varied 
significantly (Table  1: linear mixed model: p < .001 for all charac-
teristics). Live vegetation was tallest and had the largest diameter 
at the lowest salinity site (Impounded-Low), although the highest 
culm density was recorded at the highest salinity site (Unrestricted-
High). The lowest density, height, and culm diameter were found at 
Unrestricted-Low. Total estimated live biomass (dry weight based on 
both height and culm diameter) scaled by culm density was highest 
at Impounded-Low, followed by comparable values at Unrestricted-
High and Impounded-High, and significantly lower at Unrestricted-Low 
(Table 1).

3.2  |  Methane and carbon dioxide fluxes from 
static chambers

All sites were a measurable source of CH4 across the season. 
There was no effect of chamber transparency on measured CH4 
fluxes (Wilcoxon signed rank test: p >> .05 for all sites) at any site 
(Figure  2a). Therefore, for all subsequent analysis of chamber 
CH4 flux we pooled the transparent and opaque measurements. 
Methane fluxes varied significantly among sites (linear mixed 
model: marginal R2  =  .78, F  =  144.8, p < .0001), with seasonal 
mean fluxes in descending order of 149.4 ± 76.8  nmol CH4  m−2  s−1 
at Impounded-Low, 68.3 ± 45.1  nmol CH4  m−2  s−1 at Impounded-
High, 20.3 ± 27.3  nmol CH4  m−2  s−1 at Unrestricted-Low, and 
2.8 ± 1.6  nmol CH4  m−2  s−1 at Unrestricted-High (Figure  2a). On av-
erage, there was a 50-fold difference between the sites with the 
highest and lowest CH4 flux. Methane fluxes ranked in consist-
ent order of magnitude across sites (Impounded-Low > Impounded-
High > Unrestricted-Low, > Unrestricted-High) throughout the season 
and generally declined from higher values in July and August to min-
ima in November (Figure 2b).

We observed potential ebullitive flux of CH4 for seven light 
incubations and five dark incubations (11.6% and 8.3% of all mea-
surements, respectively), and there remained no effect of chamber 
transparency on observed fluxes when potential ebullition was in-
cluded (Wilcoxon signed rank test: p >> .05 for all sites, Figure S6). All 
potential ebullition was observed at the impounded sites at Herring 
River, where both water table and measured CH4 fluxes were higher 

Impounded-Low Impounded-High Unrestricted-Low Unrestricted-High

Density (culms m−2)*** 27 ± 8a 16 ± 3b 26 ± 7a 54 ± 8c

Height (cm)*** 410 ± 19a 350 ± 2b 183 ± 26c 228 ± 10d

Diameter (mm)*** 11 ± 1a 8 ± 0.0b 5 ± 1c 6 ± 0.0d

Biomass (kg m−2 dry)*** 2.2 ± 0.8a 0.8 ± 0.1b 0.3 ± 0.1c 1.0 ± 0.1b

***p < 0.001, different letters represent significant contrasts between sites.

TA B L E  1  Phragmites characteristics 
across sites
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than at the unrestricted sites at Sage Lot Pond. Including the poten-
tial ebullitive fluxes increased the mean chamber CH4 measurements 
by 23% at Impounded-Low to 184.5 ± 129.5 nmol CH4 m−2 s−1 and by 
25% at Impounded-High to 85.2 ± 37.3 nmol CH4 m−2 s−1 (Figure S6). 
Although there is evidence of a potentially important contribution of 
the ebullitive flux pathway to total CH4 flux at the impounded sites, 
we cannot estimate the frequency of ebullition nor can we rule out 
that some of the suspected ebullition we observed was an artifact 
of our measurement (e.g., disturbance to the soil structure caused 
by the weight or movement of the chamber). Therefore, we report 
these values as an upper bound for our flux measurements but omit 
the ebullitive fluxes from our subsequent analyses.

NEE of CO2 from the transparent chamber measurements aver-
aged across the season was negative (indicating a carbon sink) at all 
sites, but flux significantly varied by site (linear mixed model: mar-
ginal R2 =  .24, F = 9.8, p < .0001). The greatest NEE flux averaged 
across the season was −8.1 ± 7.7  μmol CO2  m−2  s−1 at Impounded-
High, followed by −4.7 ± 6.0  μmol CO2  m−2  s−1 at Impounded-Low, 
−1.2 ± 2.1  μmol CO2  m−2  s−1 at Unrestricted-Low, and − 0.5 ± 2.5  μm
ol CO2  m−2  s−1 at Unrestricted-High (Figure  3a). In contrast to CH4 
fluxes, there was some variability in the ranking of NEE magni-
tude across sites throughout the season (Figure  3b). However, 
ecosystem respiration of CO2 measured with the opaque cham-
bers varied more consistently by site (linear mixed model: marginal 
R2  =  .12, F  =  23.7, p < .0001) and reflected the order of magni-
tude for CH4 fluxes described above, with highest seasonal mean 
flux of 8.8 ± 6.0  μmol CO2  m−2  s−1 at Impounded-Low followed by 
5.7 ± 4.5 μmol CO2 m−2 s−1 at Impounded-High, with lower and com-
parable fluxes of 3.9 ± 2.5 μmol CO2 m−2 s−1 at Unrestricted-Low and 
3.8 ± 2.4 μmol CO2 m−2 s−1 at Unrestricted-High (Figure 3c). Both NEE 
and RECO generally followed a seasonal curve with higher magni-
tudes in July and August and steady decline through senescence in 

October and November, with NEE becoming positive (net loss of 
CO2 to atmosphere) at all sites in November (Figure 3b,d).

Across all sites and sampling dates, chamber CH4 flux was posi-
tively correlated with chamber RECO, biomass, and PAR, and showed 
strong negative relationships with NEE (expressed as negative val-
ues indicating C uptake into the ecosystem) and salinity (Table  2). 
Increasing magnitude of NEE and RECO in the chamber were also 
correlated with increased biomass, PAR, and all measures of tempera-
ture and negatively correlated with salinity. The univariate relationship 
between instantaneous CH4 chamber flux and salinity across sites was 
well described by a log-linear regression (R2 = .74, p < .0001; Figure 4), 
but there was no significant effect of salinity within individual sites.

3.3  |  Methane and carbon dioxide fluxes from eddy 
covariance at Herring River

The distribution of continuous CH4 and CO2 flux measurements 
from the eddy covariance tower encompassed the range of fluxes 
measured by the chambers at the two impounded sites (Figure 5a,b). 
Average half-hourly flux of CH4 across the chamber measurement 
period (June through November) was 46.8 ± 55.1 nmol CH4 m−2 s−1 
and flux of CO2 was −1.6 ± 7.8  μmol CO2  m−2  s−1, while across 
the entire annual period from May 2020 through May 2021 the 
mean half-hourly fluxes were 30.1 ± 43.8  nmol CH4  m−2  s−1 and 
−0.9 ± 6.9 μmol CO2 m−2 s−1. Emission of CH4 and uptake of CO2 both 
displayed a strong seasonal curve that tracked with temperatures 
(Figure 5c), peaking in late July and with a relatively stable and low 
flux during the winter from approximately November through April 
(mean 11.8 ± 11.1 nmol CH4 m−2 s−1 and 0.1 ± 5.2 μmol CO2 m−2 s−1). 
Across the annual cycle, mean daily fluxes of CH4 ranged from −0.02 
to 0.16 g C m−2 day−1 with a mean of 0.03 ± 0.03 g C m−2 day−1 and of 

F I G U R E  2  (a) Seasonally aggregated methane flux measured from both transparent and opaque chambers at each site. Points represent 
the individual chamber measurements (n = 3 chambers × 5 sampling events = 15 per subsite), boxes represent the interquartile range, 
whiskers represent the range excluding outliers, and horizontal bars represent the median. Different letters represent significant contrasts 
(p < .05) among site mean values. Methane flux is displayed on a logarithmic scale along the y-axis to highlight variability in measurements 
across all sites. (b) Time series of pooled transparent and opaque chamber measurements of methane flux over the five seasonal sampling 
events. Points represent the mean flux (pooled n = 2 chamber transparencies of mean of n = 3 chambers) with error bars representing 
standard deviation. [Colour figure can be viewed at wileyonlinelibrary.com]
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CO2 from −8.28 to– 3.87 g C m−2 day−1 with a mean of −0.96 ± 2.30 g 
C m−2  day−1. Total annual emission of CH4 was 11.4  g C m−2 
(5% = 11.4 g C m−2; 95% = 11.3 g C m−2) while net annual uptake of 
CO2 was −352 g C m−2 (5% = −389 g C m−2; 95% = −321 g C m−2).

Along with the expected diurnal cycle of CO2 flux, there was also 
a strong diurnal signal in CH4 flux from the eddy covariance tower 
with increased CH4 emissions occurring during the day. The magni-
tude of the diurnal cycle was highest during the peak of the growing 
season in July and August, when mid-day flux averaged nearly five-
fold higher than nighttime flux, and CH4 flux was associated with 
high daytime NEE (Figure 6).

The strongest univariate predictors of daily CH4 flux across the 
year were the closely correlated temperature parameters (Figure  S7) 
water temperature (R2 = .72, RMSE = 49.91, p < .0001), soil tempera-
ture (R2 = .71, RMSE = 48.67, p < .0001), and air temperature (R2 = .71, 
RMSE = 47.76, p < .0001). Salinity (R2 = .66, RMSE = 52.13, p < .0001), 
RECO (R2  =  .58, RMSE  =  47.51, p < .0001) and GPP (R2  =  .48, 
RMSE = 47.53, p < .0001) were also related to daily CH4 flux in univar-
iate models, while water-table depth, PAR, NEE, and GPP had signifi-
cant, but lower explanatory power (Figure S7). Like CH4, daily NEE was 
most strongly associated with temperature (air temperature R2 =  .13, 
RMSE  =  2.31, p < .0001; soil temperature R2  =  .13, RMSE  =  2.22, 
p < .0001; water temperature R2  =  .12, RMSE  =  2.25, p < .0001), al-
though models for all drivers had weaker explanatory power for NEE 

than for CH4 (Figure S8). When we restricted the analysis to the growing 
season only, a different set of drivers emerged for CH4 flux, and over-
all explanatory power was lower. Similar to the annual analysis, daily 
growing season CH4 flux was most strongly related to temperatures, 
with air temperature as the best predictor (R2 =  .63, RMSE = 61.56, 
p < .0001), with slightly lower variability explained by soil temperature 
(R2 = .46, RMSE = 65.86, p < .0001) and water temperature (R2 = .31, 
RMSE  =  69.60 p < .0001). Both GPP (R2  =  .34, RMSE  =  60.98, 
p < .0001) and RECO (R2 = .30, RMSE = 60.99, p < .0001) remained rel-
atively strong drivers of CH4 flux during the growing season (Figure S9). 
However, salinity (p = .75) and water-table depth (p = .08), which dis-
played little variability over the growing season (Figure  5d), had no  
effect on CH4 fluxes during this restricted time period.

3.4  |  Comparing chamber and eddy covariance 
measurements for scaling

The two independent and simultaneous flux measurements from 
the chambers and the tower at Herring River yielded nearly identi-
cal mean instantaneous CH4 emissions over the chamber measure-
ment period (July through November 2020) (Table  3). Measured 
NEE, however, was reduced by ~40% in the chambers compared 
to the eddy covariance tower. This difference was driven by both a 

F I G U R E  3  Seasonally aggregated (a) net ecosystem exchange (NEE) from transparent and (c) ecosystem respiration (RECO) from opaque 
chambers at each site. Points represent the individual chamber measurements (n = 3 chambers × 5 sampling events = 15 per subsite), boxes 
represent the interquartile range, whiskers represent the range excluding outliers, and horizontal bars represent the median. Different 
letters represent significant contrasts (p < .05) among site mean values. Time series of (b) NEE and (d) RECO over the five sampling events. 
Points represent the mean flux (mean of n = 3 chambers) with error bars representing standard deviation. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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~45% increase in RECO and a 12% decrease in GPP in the chambers 
relative to eddy covariance measurements. Scaled to a cumulative 
CH4 emissions estimate for the 5-month chamber sampling period 
from July–November, the eddy covariance measurement, which 
integrates day and night fluxes, was 56% lower than the chamber-
based estimate from Impounded-Low and 5% lower than the estimate 
from Impounded-High, with a 40% reduction overall compared to the 
mean estimate from both impounded chamber sites (Table 4).

4  |  DISCUSSION

Carbon cycling in the diked and impounded ecosystems that represent 
a significant portion of coastal wetland areas is poorly characterized and 
a potentially valuable blue carbon opportunity via tidal restoration to 
reduce CH4 emissions (Kroeger et al., 2017). Our study was designed 
to investigate CH4 and CO2 flux across a salinity range spanning im-
pounded and unrestricted coastal wetlands dominated by Phragmites to 
better understand the influence of salinity in a vegetation stratum that 
commonly occurs in impounded wetland ecosystems. Like prior synthe-
ses that encompass a range of wetland vegetation types (Poffenbarger 
et al., 2011; Windham-Myers et al., 2018), we found that flux of CH4 
increases exponentially as salinity decreases across Phragmites wetlands. 
Thus, our results provide what may be a first critical confirmation that 
resalinization could dramatically reduce CH4 emission in impounded 
ecosystems dominated by Phragmites. We also used eddy covariance to 
collect continuous measurements of C gas exchange from a freshened, 
impounded estuary, to our knowledge the first such data set of its kind. 

F I G U R E  4  Chamber-based methane flux as a function of 
salinity across all sites and sampling dates. Error bars represent 
standard deviation of mean methane flux (n = 3). The solid line 
is the univariate log-linear regression model and the dotted lines 
represent the 95% confidence interval. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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This site is a strong and continuous source of CH4 and a powerful CO2 
sink. We observed little variation in salinity and water-table depth during 
the growing season because of disconnected and impounded hydrology, 
and consequently soil temperature was the strongest predictor of both 
CH4 and CO2 fluxes. The continuous eddy covariance measurements  
allowed us to observe a strong diurnal signal in CH4 flux, which has 
important methodological implications for measuring and scaling CH4 
fluxes from similar ecosystems for blue carbon crediting applications.

4.1  |  Salinity is a strong control on C exchange in 
phragmites wetlands

The widespread observation that CH4 emissions are higher in wet-
lands with lower salinity (Bartlett et al., 1987; Martin & Moseman-
Valtierra,  2015; Poffenbarger et al.,  2011; Wang et al.,  2017; 
Windham-Myers et al., 2018) was upheld in our study across four 
Phragmites wetland sites ranging from ~4 to 25 psu. The nearly 50-fold 

F I G U R E  5  Measured eddy covariance fluxes of (a) methane and (b) net ecosystem exchange (NEE) of carbon dioxide at the Herring River 
impounded wetland from May through November 2020. Gray points show individual, high-quality half-hourly NEE measurements and the 
black line represents a 5-day running mean of gapfilled daily fluxes of NEE, along with a similar 5-day running mean of ecosystem respiration 
(RECO) and gross primary production (GPP). Chamber measurements with standard deviation error bars from within the tower footprint at 
Impounded-low and Impounded-high are plotted for comparison. (c) Mean daily air temperature measured at the flux tower with soil and water 
temperature, along with (d) water-table depth relative to sediment surface and salinity presented as the mean values recorded at Impounded-
high and Impounded-low. [Colour figure can be viewed at wileyonlinelibrary.com]
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difference (excluding ebullition) in mean CH4 flux from the freshest 
impounded site to the most saline tidally unrestricted site supports 
the idea that increased salinization of impounded Phragmites wet-
lands could dramatically reduce CH4 emission (Kroeger et al., 2017). 
The relationship between salinity and CH4 emission has been at-
tributed to sulfate reduction predominating anaerobic C respiration 
when sulfate is abundant in high salinity ecosystems, whereas meth-
anogenesis becomes more prevalent in freshwater systems where 
sulfate is limited (Luo et al., 2019; Weston et al., 2006).

Salinity covaried with both biomass and water-table depth, which 
complicates the observed salinity effect on CH4 flux. Increased 
Phragmites biomass and a trend of more rapid CO2 cycling (greater 
rates of both NEE and RECO) at the fresher impounded sites with a 
negative correlation of CO2 cycling with increased salinity reflects the 
well documented sensitivity of Phragmites to saline conditions (Burdick 

F I G U R E  6  Diurnal variation of half-hourly CH4 flux measured 
via eddy covariance at Herring River binned by month. The 
color scale indicates corresponding mean net ecosystem 
exchange in μmol CO2 m−2 s−1. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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TA B L E  3  Comparison of mean eddy covariance and static 
chamber (Impounded-low and Impounded-high) measurements of 
instantaneous carbon flux measured simultaneously (between 
10:00 and 14:00 local standard time on sampling days) at the 
impounded Herring River
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et al.,  2001; Chambers et al.,  2003; Schenck et al.,  2018; Vasquez 
et al.,  2006) and suggests that primary production is enhanced with 
reduced salinity across the gradient. More labile C availability at fresher 
sites where productivity is high likely stimulates CH4 production (Hatala 
et al., 2012; Kim, Chaudhary, et al., 2020; Mozdzer & Megonigal, 2013; 
Van Der Nat & Middelburg, 1998). Higher biomass could also increase 
CH4 emission due to the enhancement of plant-mediated conduction 
of CH4 to the atmosphere (Van Der Nat & Middelburg, 1998). While 
the data available from our current study do not allow us to tease out 
the relative contribution of sulfate availability, C availability, and plant-
mediated gas transport on the salinity effect on CH4 emissions, we 
posit that within Phragmites wetlands these factors are likely to predict-
ably covary. However, the covariation of water-table depth and salinity 
in our study is probably less universal and an artifact of the individual 
sites selected. Since higher water table is linked to increased CH4 emis-
sion (e.g., Evans et al., 2021), we cannot rule out higher water level as 
a driver of some of the higher CH4 fluxes that we observed across our 
salinity gradient, even though the effect of water table was not signif-
icant here.

The CH4 emission values presented in our analysis potentially un-
derestimate the difference between the low and high end of the salinity 
gradient due to exclusion of ebullition events and moderate drought 
conditions during the study period. Incorporating potential observed eb-
ullition events increases the mean flux rate measured by our chambers 
at the fresher impounded sites by approximately 25%, leads to greater 
variation of CH4 flux in our data set at the low end of the salinity range, 
and enhances the differences in CH4 measured across the salinity gradi-
ent. However, our sampling was not designed to estimate the frequency 
and, therefore, importance of this pathway. Prior studies have demon-
strated that in dense, emergent wetland vegetation like Phragmites, CH4 
flux from ebullition is much less significant than the plant mediated flux 
(van den Berg et al., 2020). Further, given the moderate to increasingly 
severe drought conditions experienced across our sites during the study 
year (USDM, 2021), our measurements may not be reflective of mean 
conditions at these locations. Monitoring data at the Herring River from 
2017–2019 (O'Keefe Suttles et al., 2020) indicate a slightly higher water 
level and lower salinity in prior years, while monitoring data collected 
near the Unrestricted-High site at Sage Lot Pond (O'Keefe Suttles, Eagle, 
Martin, et al., 2022) also point to higher water table and lower salinity in 
years without drought. Given the importance of salinity demonstrated 
in our study and the general importance of water level for CH4 emis-
sions (Evans et al., 2021), we speculate that the dry and relatively saline 
conditions in 2020 may have suppressed CH4 emission across the gra-
dient relative to more typical years.

4.2  |  Brackish, impounded coastal wetland is a 
strong sink for CO2, source for CH4

The annual NEE of −352 g CO2-C m−2  year−1 and CH4 emission of 
11.4  g CH4-C m−2  year−1 measured by the eddy covariance tower 
at the Herring River indicate that this impounded ecosystem is a 
strong sink for CO2 but also an important source of CH4. We note 

that unlike our chamber-based measurements, the eddy covari-
ance measurements do incorporate CH4 fluxes from ebullition. 
Although limited comparable eddy covariance measurements exist 
in this geographical region, our values suggest a high CO2 uptake 
via NEE relative to the −179 ± 32 g C m−2 year−1 reported for a natu-
ral tidal salt marsh in northern Massachusetts (Forbrich et al., 2018), 
−213 g C m−2  year−1 for a restored tidal marsh (Artigas et al.,  2015) 
and −73 g C m−2 year−1 (Schäfer et al., 2019) for a natural tidal marsh 
in New Jersey, and 138 ± 108 g C m−2 year−1 emission for a tidal salt 
marsh in Delaware (Vázquez-Lule & Vargas, 2021), while globally av-
eraged NEE for coastal wetlands measured by eddy covariance has 
been reported at −208 ± 89 g C m−2 year−1 (Lu et al., 2017). Although 
eddy covariance data on CH4 exchange in coastal marshes remains 
limited, the CH4 emissions from this site far exceed the median salt 
marsh emissions of 0.8 ± 2.9 g C m−2 year−1 recently reported from a 
global synthesis (Knox et al.,  2019), but the value is comparable to 
the 11.1 ± 3.6 g C m−2 year−1 reported for a mesohaline salt marsh in 
Delaware (Vázquez-Lule & Vargas, 2021) and 11 g C m−2 year−1 for a 
brackish marsh in coastal Louisiana (Krauss et al., 2016).

The total CH4 emission measured from this ecosystem is about 
59% higher than the 7.2 g C m−2 year−1 that would be predicted from 
the model developed by Poffenbarger et al.  (2011) based on an-
nual site salinity (7.1 psu). This is due in part to the high uncertainty 
at the low end of the salinity range for that model (Poffenbarger 
et al., 2011). It may also suggest that salinity alone is not a sufficient 
proxy for CH4 emissions in impounded ecosystems. When hydro-
logic flushing is restricted, it is possible that sulfate consumption 
without tidal replenishment leads to an even higher degree of sul-
fate depletion than would be indicated by salinity measurements 
(Koebsch et al.,  2019). Incorporating additional parameters, like 
sulfate concentrations, water-table depth, and vegetation type and 
biomass may be needed to develop a model that can better predict 
annual CH4 exchange in impounded ecosystems.

Daily variation in both CH4 and CO2 fluxes across the year were well 
explained by water temperature, and the closely related parameters of 
air and soil temperatures, with air temperature strongly predominating in 
the growing season. The dominant control of CH4 and CO2 fluxes by tem-
perature aligns with previous findings across a range of coastal wetlands 
(Abdul-Aziz et al., 2018). Since the site does not experience wide varia-
tion in salinity or water-table depth during the growing season because 
of the managed hydrology, the importance of these parameters in driving 
daily CH4 flux is dramatically reduced during the growing season when 
CH4 fluxes are at their peak. The low variability in the key parameters of 
salinity and water-table depth are likely to be characteristic of impounded 
ecosystems and therefore it is important to consider the elevated impor-
tance of temperature as a driver of CH4 flux for modeling emissions.

4.3  |  Diurnal cycle requires consideration when 
scaling CH4 measurements

Despite the strong agreement between synchronous flux measure-
ments via static chambers and eddy covariance (Table 3), the diurnal 
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cycle in CH4 exchange that we observed signals that caution is war-
ranted for scaling chamber-based CH4 fluxes to daily, monthly, or 
annual values. By assuming that our mid-day measurements repre-
sent a constant daily CH4 flux, we would overestimate cumulative 
CH4 emission during the 5-month chamber sampling period relative 
to the eddy covariance estimate by roughly 70% (Table  4). At the 
scale of a blue carbon crediting project, this error is tremendously 
important. Yet, this kind of extrapolation is currently permitted in 
C accounting methodology (Needleman et al., 2018) and has been 
incorporated into global syntheses of CH4 emission in coastal wet-
lands (Al-Haj & Fulweiler, 2020; Poffenbarger et al., 2011; Windham-
Myers et al., 2018).

A diurnal cycle in CH4 flux has been widely documented in other 
Phragmites ecosystems (Duan et al., 2005; van den Berg et al., 2016, 
2020), as well as those dominated by rice, cattail, and Scirpus (Hatala 
et al., 2012; Van Der Nat et al., 1998; Villa et al., 2020). Researchers 
have attempted to capture the diurnal cycle by pairing mid-day 
transparent and opaque chamber measurements to simulate night-
time fluxes and unlike in our study, some have observed a positive 
effect of light on CH4 emission (Hirota et al.,  2007; Moseman-
Valtierra et al., 2016; Van der Nat & Middelburg, 2000). However, 
we speculate that our shorter incubations (3–7 min vs. 30–40 min in 
some of these prior studies), which minimize artifacts like chamber 
heating and dramatic changes in CO2 and CH4 concentrations during 
sampling, do not allow enough time for physiological adaptation 
(e.g., stomatal closure) to dark conditions to observe a simulated 
nighttime effect. Therefore, this approach seems inconsistent and 
likely fails to capture the actual nighttime effect.

The mechanism for the daytime peak in CH4 emission is likely 
associated with plant-mediated transport, driven by a pressure gra-
dient that is stronger during active photosynthesis (Armstrong & 
Armstrong, 1991; van den Berg et al., 2020). Previous studies have 
also linked mid-day peaks in CH4 production to an abundance of 
newly fixed carbon substrate for methanogenesis (Hatala et al., 2012) 
and diel variations in soil temperature (Bansal et al.,  2018). These 
mechanisms are not mutually exclusive and may all be factors in the 
pattern we observe here. In this Phragmites dominated ecosystem, 
the diurnal effect is relatively large (daytime fluxes of CH4 up to five 
times higher than nighttime fluxes). Other types of ecosystems dom-
inated by vegetation with weaker plant-mediated flux may have little 
or no diurnal variation in CH4 emission.

Further research to characterize the relative importance of diur-
nal cycling in CH4 flux across different types of vegetation could help 
inform appropriate monitoring strategies for blue carbon projects. 
We propose that when feasible, CH4 flux measurements be collected 
over a 24-h cycle, either with chambers or eddy covariance, since 
brief dark daytime chamber measurements did not capture the di-
urnal effect in our study. However, daytime chamber measurements 
represent the vast majority of the data we have available on CH4 
fluxes from tidal wetlands (Al-Haj & Fulweiler, 2020; Poffenbarger 
et al., 2011; Windham-Myers et al., 2018) and are likely to remain 
dominant given the financial and logistical constraints of conduct-
ing 24-h sampling. Therefore, determining the most appropriate way 

to scale these data is critical. Vegetation specific scaling factors for 
daytime chamber measurements would allow for the continuation of 
convenient daytime monitoring to be applied.

We can use the relationship between cumulative estimates 
from both flux measurement methods in our study to develop a 
scaling factor appropriate to CH4 emission patterns of Phragmites. 
Over the 5-month chamber sampling period, the cumulative CH4 
emission measurement from the eddy covariance tower at Herring 
River (9.2 g C m−2) is less than the mean of the estimates from the 
two chamber sites at Herring River for the same period (15.5 g C m−2; 
Table 4). If we assume that the mean of the two sampling sites at 
Herring River (Impounded-Low and Impounded-High, both dominated 
by Phragmites) roughly represent the footprint of the eddy covari-
ance tower (Figure S1), calculate the ratio of the two measures of 
cumulative CH4 emission, we get a Phragmites-specific scaling factor 
of ~0.6 to apply to mid-day chamber measurements to account for 
the diurnal cycle.

To scale up our chamber measurement period to a full annual 
cycle, we used the ratio of our measured annual estimate of CH4 
emission from the eddy covariance tower (11.4 g C m−2) compared 
to the July–November cumulative emission measured during the 
chamber sampling period (9.2  g C m−2) to derive a factor of ~1.2 
to apply to July–November cumulative chamber values. This 
approach to scaling shorter term measurements to annualized 
fluxes is similar to the scaling method developed by Bridgham 
et al. (2006) and used by Poffenbarger et al. (2011) to convert daily 
growing season measurements to a full annual cycle. By applying 
these two scaling factors (that is, our primary recommendation of 
the vegetation-specific scaling factor to account for diurnal cycle 
of CH4 emissions and the annualized scaling factor required due 
to the timing of this study), we can estimate annual CH4 emission 
values across our salinity gradient (Table 4). While there is error 
associated with this rough scaling approach, using this method or 
other related strategies to account for the well documented diur-
nal cycle of CH4 flux in many types of wetland vegetation (Duan 
et al., 2005; Hatala et al., 2012; van den Berg et al., 2016, 2020; 
Van Der Nat & Middelburg,  1998; Villa et al.,  2020) could avoid 
substantial errors in scaling that lead to overestimation of base-
line CH4 for carbon credit quantification, planning, and monitoring 
applications.

4.4  |  Implications for radiative balance and 
blue carbon management potential of impounded 
Phragmites coastal ecosystems

To assess the radiative impact of the CH4 emission from the impounded 
Herring River, we calculated the sustained flux global warming poten-
tial over 100 years (Neubauer & Megonigal, 2015) of the annual CH4 
emission measured in our study against the C accumulation rate at this 
site (−630 g CO2-eq m−2 year−1, O'Keefe Suttles, Eagle, Mann, Wang, 
et al., 2021). We use C accumulation rate, which represents the newly 
fixed C that remains sequestered in the wetland, rather than NEE, to 
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account for the up to 50% of NEE that may be exported from the 
marsh platform via lateral flow (Bogard et al., 2020; Wang et al., 2016). 
Over this timeframe, the CH4 emissions at the impounded Herring 
River site completely offset the C storage and give this ecosystem a 
positive net radiative balance (Table 5).

Resalinization of impounded Phragmites wetlands with restoration 
of tidal flow would push ecosystems towards the more saline end of 
our gradient and reduce CH4 emission. Although Phragmites tends to 
be less competitive in more saline conditions, established populations 
can persist despite increased salinity (Hazelton et al., 2014). Therefore, 
saline conditions would also likely reduce primary production, as in-
dicated by the decreased Phragmites biomass and NEE at the unre-
stricted sites reported here and supported by C accumulation rate 
measured in the Phragmites zone at the unrestricted Sage Lot Pond 
site (−491 g CO2-eq m−2, O'Keefe Suttles, Eagle, Martin, et al., 2022). 
Based on the mean CH4 emission value from the two unrestricted 
sites at Sage Lot Pond (1.3 g C m−2 year−1, from Table 4), the reduc-
tion in CH4 emission with tidal restoration would likely compensate 
for the reduced productivity and result in an ecosystem with a strong 
net negative radiative balance (Table  5). Ultimately though, resto-
ration of saline tidal flow to an impounded site like the Herring River, 
if coupled with active Phragmites removal to enable reestablishment 
of native vegetation, should result in a restored natural salt marsh 
ecosystem. Applying the same sustained flux global warming potential 
and assuming recovery of C storage to the rate observed in a natural 
analog to the Herring River dominated by Spartina on the north shore 
of Cape Cod (−986 CO2-eq m−2 year−1; O'Keefe Suttles, Eagle, Mann, 
Spivak, et al., 2021) and CH4 emission of 0.8 g C m−2 year−1 based on 
the median value for salt marsh ecosystems (Knox et al., 2019), we 
could expect the restored radiative balance of this ecosystem to be 
on the order of −938 g CO2-eq m−2 year−1 (Table 5). This suggests that 
restoration of tidal flow accompanied by active management strate-
gies to remove Phragmites and replace with native salt marsh vegeta-
tion can be twice as effective as resalinization alone. Over the entire 
Phragmites—dominated stratum of the Herring River ecosystem (about 
21 ha), full restoration from the current impounded state to a salt marsh 
ecosystem could avoid emission of 208 metric tonnes CO2-eq year−1 
from just one subset of the ~400 ha estuary. Excluding the effects of 
sea-level rise and climate change, as well as the transition phase of the 

restoration that would lead to a transient net emission of CO2 from 
biomass turnover, this could result in a net mitigation of 4160 metric 
tonnes of CO2-eq over 20 years.

When considered within time horizons relevant to meeting the 
global Paris Agreement target of limiting warming to 1.5°C above 
pre-industrial levels (United Nations, 2015), it has been suggested 
that the global warming potential of CH4 be revised to 75 times that 
of CO2 (Abernethy & Jackson, 2022), which would result in a 40% 
increase in the calculated benefit of the Herring River restoration. 
Although questions remain as to the net climate benefit of conserv-
ing many existing blue carbon ecosystems due to poorly constrained 
CH4 and nitrous oxide emissions that can offset C sequestration 
(Rosentreter et al., 2021), this study suggests that restoration of sa-
line tidal flow would predictably reduce CH4 emission and provide 
reliable carbon offsets.

5  |  CONCLUSIONS

We empirically demonstrate that in impounded coastal wetlands 
dominated by Phragmites, salinization with tidal restoration can 
markedly reduce CH4 emission, an effective blue carbon opportu-
nity and key information for decision-makers and stakeholders to 
manage GHG emissions. Pairing multiple measurement techniques 
was a powerful approach to learn about important drivers of CH4 
in these understudied ecosystems and resulted in management-
relevant recommendations for scaling and monitoring, namely 
attention to the diurnal cycle of CH4 flux and the elevated im-
portance of temperature, that are key to ensuring accurate base-
line and restoration assessments for blue carbon applications in 
impounded ecosystems. While challenges remain for widespread 
implementation of coastal wetland restoration in a natural climate 
solutions framework, this study provides an improved under-
standing of C exchange in impounded ecosystems that will help 
advance this critical agenda.
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